Hostname: page-component-6bf8c574d5-t27h7 Total loading time: 0 Render date: 2025-02-18T20:37:09.272Z Has data issue: false hasContentIssue false

Ribosomal RNA, Maternal Age, and Down's Syndrome*

Published online by Cambridge University Press:  27 January 2025

F. Salamanca-Gomez*
Affiliation:
National Institute for Special Programs of Health, INPES, Bogotà, Colombia
*
Department of Genetics, Pediatric Hospital, National Medical Centre, Instituto Mexicano del Seguro Social, Apartado Postal 12-951, México 12, D.F., México

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A selective loss (or a blocking) of rRNA genes in ageing oocytes, and its compensation through the retention of an acrocentric nucleolar organizer chromosome, is proposed as a possible mechanism responsible for the increased frequency of Down's syndrome with maternal age.

Riassunto

RIASSUNTO

Viene proposta, quale meccanismo per cui la frequenza della sindrome di Down aumenta con l'età materna, una perdita selettiva di geni di rRNA, oppure il loro blocco in oociti, compensata dal trattenimento di un cromosoma organizzatore nucleolare acrocentrico.

Résumé

RÉSUMÉ

L'on propose, comme mécanisme par lequel la fréquence du syndrome de Down augmente avec l'âge maternel, une perte sélective de gènes de rRNA, ou bien leur blocage dans les oocytes, compensée par l'entretien d'un chromosome organisateur nucléolaire acrocentrique.

Zusammenfassung

ZUSAMMENFASSUNG

Es wird angenommen, dass das vermehrte Auftreten des Downschen Syndroms bei zunehmendem Alter der Mütter darauf beruht, dass die rRNA-Gene entweder einen selektiven Verlust erleiden oder in Oozyten blockiert werden, wobei zum Ausgleich eines akrozentrischen Nukleolus-Organisator Chromosom festgehalten wird.

Type
Research Article
Copyright
Copyright © The International Society for Twin Studies 1975

Footnotes

*

Partially supported by a grant from the Ford Foundation.

References

REFERENCES

Arrighi, F.E., Hsu, T.C. 1971. Localization of heterochromatin in human chromosomes. Cytogenetics, 10: 8186.CrossRefGoogle ScholarPubMed
Barath, F., Kuntzel, J. 1972. Induction of mitochondrial RNA polymerase in Neurospora crassa. Nature [New Biol.], 240: 195197.CrossRefGoogle ScholarPubMed
Berry, R.O. 1941. Chromosome behavior in the germ cells and development of the gonads in Sciara ocellaris. J. Morphol., 68: 547552.CrossRefGoogle Scholar
Bodmer, W.F. 1961. Effects of maternal age on the incidence of congenital abnormalities in mouse and man. Nature, 190: 11341135.CrossRefGoogle Scholar
Brachet, J. 1943. La localization des acides pentosenucleiques dans les tissues animaux et les oeufs d'amphibiens en voie de dévélopment. Arch. Biol., 53: 207217.Google Scholar
Brown, D.D., Littna, E. 1964. RNA synthesis during the development of Xenopus laevis, the South African claxed toad. J. Mol. Biol., 8: 669674.CrossRefGoogle ScholarPubMed
Brown, D.D., David, B. 1968. Specific gene amplification in oocytes. Science, 160: 272273.CrossRefGoogle ScholarPubMed
Brown, D.D., Weber, C.S. 1968. Gene linkage by RNA-DNA hybridization. I. Unique DNA sequences homologous to 4S RNA, 5S RNA and ribosomal RNA. J. Mol. Biol., 32: 661668.CrossRefGoogle Scholar
Davidson, E.H. 1968. Gene Activity in Early Development. New York and London: Academic Press.Google Scholar
Dutrilleaux, B., Lejeune, J. 1970. Etude de la déscendance des individus porteurs d'une translocation t(Dq Dq). Ann. Genet., 13: 1119.Google Scholar
Edstrom, J.E., Gall, J.G. 1963. The base composition of ribonucleic acid in lampbrush chromosomes, nucleoli, nuclear sap, and cytoplasma of Triturus oocytes. J. Cell. Biol., 19: 279281.CrossRefGoogle Scholar
Elsdale, T.R., Fischberg, M., Smith, S. 1958. A mutation that reduces nucleolar number in Xenopus laevis. Exptl. Cell. Res., 14: 642644.CrossRefGoogle ScholarPubMed
Ferguson-Smith, M.A., Handmaker, S.D. 1961. Observations on the satellited human chromosomes. Lancet, 1: 638640.CrossRefGoogle ScholarPubMed
Ferguson-Smith, M.A. 1964. The sites of nucleolus formation in human pachytene chromosomes. Cytogenetics, 3: 124134.CrossRefGoogle ScholarPubMed
Fialkow, P.J. 1964. Autoimmunity: a predisposing factor to chromosomal aberrations. Lancet, 1: 474475.CrossRefGoogle ScholarPubMed
Frazer, J., Mitchell, A.J. 1876. Kalmuk idiocy: report of a case with autopsy. With notes on sixty-two cases. J. Mental Sci., 22: 169176.CrossRefGoogle Scholar
German, J.L. 1968. Mongolism, delayed fertilization and human sexual behaviour. Nature, 217: 516517.CrossRefGoogle ScholarPubMed
Geyer-Duszynska, I. 1966. Genetic factors in oogenesis and spermatogenesis in Cecidomyidae. Chromosomes Today, 1: 174178.Google Scholar
Grell, R.F. 1971. Distributive pairing in man? Ann. Genet., 14: 165171.Google ScholarPubMed
Henderson, S.A., Edwards, R.G. 1968. Chiasma frequency and maternal age in mammals. Nature, 218: 2228.CrossRefGoogle ScholarPubMed
Henderson, A.S., Warburton, D., Atwood, K.C. 1972. Location of ribosomal DNA in the human chromosome complement. Proc. Natl. Acad. Sci. USA, 69: 33943398.CrossRefGoogle ScholarPubMed
Johnson, R., Strehler, B.L. 1972. Loss of genes coding for rRNA in ageing brain cells. Nature, 240: 412414.CrossRefGoogle Scholar
Kahn, J. 1962. The nucleolar organizer in the mitotic chromosome complement of Xenopus laevis. Quart. J. Microscop. Sci., 103: 407410.Google Scholar
Keay, A.J. 1958. The significance of twins in mongolism in the light of new evidence. J. Ment. Defic. Res., 2: 17.Google ScholarPubMed
Levkey, A.M., Bell, E., Durnell, J.E. 1963. Ribosomal RNA in the developing chick embryo. Science, 141: 1187.Google Scholar
McDonald, A.D. 1964. Mongolism in twins. J. Med. Genet., 1: 3941.CrossRefGoogle ScholarPubMed
Mintz, B. 1964. Synthetic processes and early development in the mammalian egg. J. Exptl. Zool., 15785100.CrossRefGoogle ScholarPubMed
Penrose, L.S. 1933. The relative effects of paternal and maternal age in mongolism. J. Genet. 27: 219223.CrossRefGoogle Scholar
Price, G.V., Modak, S.P., Makinodan, T. 1971. Age-associated changes in the DNA of mouse tissue. Science, 171: 917920.CrossRefGoogle ScholarPubMed
Raven, C.P. 1961. Oogenesis: the storage of development information. Oxford: Pergamon Press.Google Scholar
Riley, R., Bennett, M.D. 1971. Meiotic DNA synthesis. Nature, 230: 182185.CrossRefGoogle ScholarPubMed
Salamanca, F., Armendares, S. 1974. C-bands in human metaphase chromosomes treated by barium hydroxide. Ann. Genet., 17: 135137.Google Scholar
Stoller, A., Collman, R.D. 1965. Incidence of infectious hepatitis followed by Down's syndrome nine months later. Lancet, 2: 12211223.CrossRefGoogle ScholarPubMed
Von Hahn, H.P. 1970. Structural and functional changes in nucleoprotein during the ageing of the cell. Gerontologia, 16: 116118.CrossRefGoogle ScholarPubMed
Whitehouse, H.L.K., Hastings, P.J. 1965. The analysis of genetic recombination on the polaron hybrid DNA model. Genet. Res., 6: 2792.CrossRefGoogle ScholarPubMed
Wilson, E.B. 1925. The Cell in Development and Heredity. New York: McMillan.Google Scholar
Wilt, F.H. 1963. The synthesis of ribonucleic acid of the sea urchin embryos. Biochem. Biophys. Res. Commun., 11: 447453.CrossRefGoogle ScholarPubMed