We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
http://www.editorialmanager.com/aeroj/default.aspx.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The RemoveDEBRIS mission has been the first mission to successfully demonstrate, in-orbit, a series of technologies that can be used for the active removal of space debris. The mission started late in 2014 and was sponsored by a grant from the EC that saw a consortium led by the Surrey Space Centre to develop the mission, from concept to in-orbit demonstrations, that terminated in March 2019. Technologies for the capture of large space debris, like a net and a harpoon, have been successfully tested together with hardware and software to retrieve data on non-cooperative target debris kinematics from observations carried out with on board cameras. The final demonstration consisted of the deployment of a drag-sail to increase the drag of the satellite to accelerate its demise.
“Urban air vehicles” have been hailed as the next revolution in aviation. Prototypes of various sizes have been flown to demonstrate basic flight (hover and climb), but in most cases there is no demonstration of full flight capability, for example conversion from vertical to level flight (conversion corridor). There are proposals for vehicles in a wide range of scales: from drones specifically designed to deliver goods, to full size vehicles for manned transportation. Most of the concepts proposed include full electric propulsion, multiple (often convertible) rotors (ducted or un-ducted, counter-rotating), and widespread use of composite materials. Start-up companies are seeking funding with high-profile demonstrations in front of the media, but many unresolved technical problems are not been solved. Large aerospace companies have joined the fray. These initiatives are fuelling expectations that achieving the next milestone is within easy reach. This paper aims to fill some gaps in understanding and curb optimism. It takes a holistic view in order to establish a scientific basis for design, manufacturing, operations.
This paper presents the results of an experimental campaign to measure thruster-relevant parameters for a high-power (180kW) inductive propulsion system utilising Ar,
$ {\textrm{O}}_{2}$
,
$ \textrm{N}_{2}$
, and
$ \textrm{CO}_{2}$
as propellants. Results from the investigation show that inductive thrusters can make use of these propellants without the severe degradation seen in other electric propulsion systems. Furthermore, the collection of experimental data at powers greater than 100kW provides a reference of performance for the high-power electric propulsion devices intended for missions in the near future. Thrust and specific impulse in inductive systems can be improved by preferentially combining the chemical properties of atomic and molecular propellants. The maximum thrust recorded during these experiments was 7.9N, obtained using a combination of argon and oxygen (0.68 Ar + 0.32
$\textrm{O}_{2}$
). The combination of argon and molecular propellants also decreased thermal losses within the discharge volume. Specific impulse can be doubled for the same input electric power by combining propellants, and future modifications to the thruster geometry and acceleration mechanism can be used to further improve the performance of such systems.
Although the application of new, reduced aircraft separation minima can directly increase runway throughput, the impact thereof on the traffic flow of aircraft arriving at the destination airport has not been discussed yet. This paper proposes a data-driven and queue-based modeling approach and presents an analysis of the impact on the delay time of arriving aircraft in the airspace within a radius of 100 nautical miles around an airport. The parameters of our queuing model were estimated by analysing the data contained in the radar tracks and flight plans for flights that arrived at Tokyo International Airport during the 2 years of 2016 and 2017. The results clarified the best arrival strategy according to the distance from the arrival airport: The combination of airspace capacity control and reduction of the flight time and separation variance is the most powerful solution to mitigate delays experienced by arriving traffic while also allowing an increase in the amount of arrival traffic. The application of new wake vortex categories would enable us to increase the arrival traffic to 120%. In addition, the arrival delay time could be minimised by implementing the proposed arrival traffic strategies together with automation support for air traffic controllers.
Large-eddy simulations (LES) have been employed to investigate the far-field four-vortex wake vortex evolution over 10min behind an aircraft formation. In formation flight scenarios, the wake vortex behaviour was found to be much more complex, chaotic and also diverse than in the classical single aircraft case, depending very sensitively on the formation geometry, i.e. the lateral and vertical offset of the two involved aircraft. Even though the case-by-case variability of the wake vortex behaviour across the various formation flight scenarios is large, the final plume dimensions after vortex dissolution are in general substantially different from those of single aircraft scenarios. The plumes are around 170 to 250m deep and 400m to 680m broad, whereas a single A350/B777 aircraft would produce a 480m deep and 330m broad plume. Formation flight plumes are thus not as deep, yet they are broader, as the vortices do not only propagate vertically but also in span-wise direction. Two different LES models have been employed independently and show consistent results suggesting the robustness of the findings. Notably,
$CO_{2}$
emissions are only one contribution to the aviation climate impact among several others like contrails and emission of water vapour and nitrogen oxides, which would be all affected by the implementation of formation flight. Thus, we also highlight the differences in ice microphysical and geometrical properties of young formation flight contrails relative to the classical single aircraft case.
High-speed aircraft often develop separation-induced leading-edge vortices and vortex flow aerodynamics. In this paper, the discovery of separation-induced vortex flows and the development of methods to predict these flows for wing aerodynamics are reviewed. Much of the content for this article was presented at the 2017 Lanchester Lecture and the content was selected with a view towards Lanchester’s approach to research and development.
In the previous works by the authors, an efficient method of control of the inversion of the spinning spacecraft was proposed. This method was prompted by the Dzhanibekov’s Effect or Tennis Racket Theorem, which are often seen by many as odd or even mysterious. For the spacecraft, initially undergoing periodic flipping motion, proposed method allows to completely stop these flips by transferring the unstable motion into the regular stable spin. Similarly, the method allows activation of the flipping motion of the spacecraft, which is initially undergoing its stable spin. In this paper, spacecraft designs, which have inertial morphing capabilities, are considered and their advantages are further investigated. For general formulation, the ability of the spacecraft to change its inertial properties, associated with all three principal axes of inertia, are assumed. For simulation of these types of spacecraft systems, extended Euler’s equations are used and peculiar dynamics of the spacecraft is illustrated with a several study cases. Complex spacecraft attitude dynamics manoeuvres, using geometric interpretation, employing angular momentum spheres and kinetic energy ellipsoids, are considered in detail. Contributions of the inertial morphing to the changes of the shape of the kinetic energy ellipsoid are demonstrated and are related to the resultant various feature manoeuvres, including inversion and re-orientation. A method of reduction of the compound rotation of the spacecraft into a single stable predominant rotation around one of the body axes was proposed. This is achieved via multi-stage morphing and employing proposed instalment into separatrices. Implementation of the morphing control capabilities are discussed. For the periodic inversion motions, calculation of the periods of the flipping motion, based on the complete elliptic integral of the first kind, is performed. Flipping periods for various combinations of inertial properties of the spacecraft are presented in a systematic way. This paper discusses strategies to the increase or reduction the flipping and/or wobbling motions. A discovered asymmetric ridge of high periods for peculiar combinations of the inertial properties is discussed in detail. Numerous examples are illustrated with animations in virtual reality, facilitating explanation of the analysis and control methodologies to a wide audience, including specialists, industry and students.
This work presents a comparative study of design and development, in addition, of analyses of variable span morphing of the tapered wing (VSMTW) for the unmanned aerial vehicle (UAV). The proposed concept consists in the sliding of the inner section into the fixed part along the wing with varying the angle of the inner section inside the fixed part (parallel with the leading edge and the moving-wing axis is coincident to the fixed-wing axis) within two configurations. The wing design is based on a NACA 4412 aerofoil with the root chord of 0.675m and the tip chord of 0.367m for the fixed segment and 0.320m for the moving segment. Morphing wing analysis occurs at three selected locations that have been specified for extending and modifying span length by (25%, 50%, and 75%) of its original length to fulfill various flight mission requirements. The main objective of this paper is to compare the aerodynamic characteristics for several span lengths and sweep angles and to find their most efficient combinations. The wing is optimised for different velocities during all phases of flight (min speed, loiter, cruise, and max speed) which are 17, 34, 51, and 68m/s, respectively. The analyses are performed by computing forces (drag and lift) and moments at various altitudes, such as at the sea level, at 5,000 and 10,000ft. Two-dimensional aerodynamic analyses are carried out using XFLR5 code, and the ANSYS Fluent solver is used for investigating the flow field on the three-dimensional wing structure. It has been observed that a variable span morphing of tapered wing technology with a variable sweep angle can deliver up to 32.93% improved aerodynamic efficiency. This concept design can also be used for the aircraft roll motion technique instead of conventional control devices. Furthermore, the range flight mission increases up to 46.89% when the wing is placed at its full length compared to an original position. Finally, it has been concluded from this study that the wing design is more sensitive to the changing angle of the inner section and more efficient in terms of aerodynamic characteristics.
One of today’s most propitious immersive technologies is virtual reality (VR). This term is colloquially associated with headsets that transport users to a bespoke, built-for-purpose immersive 3D virtual environment. It has given rise to the field of immersive analytics—a new field of research that aims to use immersive technologies for enhancing and empowering data analytics. However, in developing such a new set of tools, one has to ask whether the move from standard hardware setup to a fully immersive 3D environment is justified—both in terms of efficiency and development costs. To this end, in this paper, we present AeroVR—an immersive aerospace design environment with the objective of aiding the component aerodynamic design process by interactively visualizing performance and geometry. We decompose the design of such an environment into function structures, identify the primary and secondary tasks, present an implementation of the system, and verify the interface in terms of usability and expressiveness. We deploy AeroVR on a prototypical design study of a compressor blade for an engine.