Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-02-10T08:18:52.635Z Has data issue: false hasContentIssue false

Retrospective and Prospective for Scientific Provenance Studies in Archaeology

Published online by Cambridge University Press:  06 February 2025

A. M. Pollard
Affiliation:
University of Oxford

Summary

Provenance has been one of the major scientific applications in archaeology for a hundred years. The 'Golden Age' began in the 1950s, when large programmes were initiated focussing on bronzes, ceramics, and lithics. However, these had varying impact, ranging from wide acceptance to outright rejection. This Element reviews some of these programmes, mainly in Eurasia and North America, focussing on how the complexity of the material, and the effects of human behaviour, can impact on such studies. The conclusion is that provenance studies of lithic materials and obsidian are likely to be reliable, but those on ceramics and metals are increasingly complicated, especially in the light of mixing and recycling. An alternative is suggested, which focusses more on using scientific studies to understand the relationship between human selectivity and processing and the wider resources available, rather than on the simple question of 'where does this object come from'.
Get access
Type
Element
Information
Online ISBN: 9781009592208
Publisher: Cambridge University Press
Print publication: 06 February 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon., Early mining and metallurgy group. Man 46, 99 (1946).Google Scholar
Argyropoulos, V., A characterization of the compositional variations of Roman Samian pottery manufactured at the Lezoux production centre. Archaeometry 37, 271285 (1995).CrossRefGoogle Scholar
Asaro, F. and Adan-Bayewitz, D., The history of the Lawrence Berkeley National Laboratory instrumental neutron activation analysis programme for archaeological and geological materials. Archaeometry 49, 201214 (2007).CrossRefGoogle Scholar
Aspinall, A. and Feather, S. W., Neutron activation analysis of prehistoric flint mine products. Archaeometry 14, 4153 (1972).CrossRefGoogle Scholar
Aspinall, A., Warren, S. E., Crummett, J. G., and Newton, R. G., Neutron activation analysis of faience beads. Archaeometry 14, 2740 (1972).CrossRefGoogle Scholar
Aston, F. W., The constitution of atmospheric neon. Philosophical Magazine 39(232), 449455 (1920a).Google Scholar
Aston, F. W., The mass-spectra of chemical elements. Philosophical Magazine 39(233), 611625 (1920b).Google Scholar
Aston, F. W., The mass-spectra of chemical elements – Part VI. Accelerated anode rays continued. Philosophical Magazine 49(294), 11911201 (1925).Google Scholar
Bagley, R. W., Shang Ritual Bronzes in the Arthur M. Sackler Collections. Arthur M. Sackler Foundation, Washington, DC (1987).Google Scholar
Baudouin, M., Procédé pour la détermination des minéraux constituent les haches préhistoriques métalliques: emploi de l’analyse spectrale. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences 173, 862863 (1921).Google Scholar
Beck, H. C. and Stone, J. F. S., Faience Beads of the British Bronze Age. Society of Antiquaries, Oxford (1936).CrossRefGoogle Scholar
Bentley, M., Gilmour, B., and Pollard, A. M., ‘The sword that was broken … .’: The detection of recycled iron in the archaeological record. Archaeometry 65, 12601274 (2023).CrossRefGoogle Scholar
Bergman, T. O., Disquisitio chemica de terra gemmarum. Nova Acta Regiae Societatis Scientiarum Upsaliensis III, 137170 (1777).Google Scholar
Bergman, T. O., Dissertatio Chemica de Analysi Ferri. Edmann, Uppsala (1781).Google Scholar
Bidegaray, A. ‐I. and Pollard, A. M., Tesserae recycling in the production of medieval blue window glass. Archaeometry 60, 784796 (2018).CrossRefGoogle Scholar
Bieber, A. M. Jr., Brooks, D. W., Harbottle, G., and Sayre, E. V., Application of multivariate techniques to analytical data on Aegean ceramics. Archaeometry 18, 5974 (1976).CrossRefGoogle Scholar
Biek, L., The examination of some copper ores: A report of the ancient mining and metallurgy committee. Man 57, 7276 (1957).CrossRefGoogle Scholar
Biron, I. and Chopinet, M.-H., Colouring, decolouring and opacifying glass. In Janssens, K. (ed.), Modern Methods for Analysing Archaeological and Historical Glass, pp. 4966. Wiley, London (2012).Google Scholar
Bishop, R. L., Five decades of Maya Fine Orange ceramic investigation by INAA. In van Zelst, L. (ed.), Patterns and Process: A Festschrift in Honor of Dr. Edward V. Sayre, pp. 8091. Smithsonian Center for Materials Research and Education. Suitland, Maryland (2003).Google Scholar
Bishop, R. L., Instrumental approaches to understanding Mesoamerican economy: Elusive promises. Ancient Mesoamerica 25(1), 251269 (2014).CrossRefGoogle Scholar
Boulanger, M., Recycling data: Working with published and unpublished ceramic compositional data. In Hunt, A. (ed.), Oxford Handbook of Archaeological Ceramic Analysis, pp. 7384. Oxford University Press, Oxford (2017).Google Scholar
Boulanger, M. T., Digitization of the Lawrence Berkeley Laboratory archaeometric archives: Status update and availability announcement. Society for Archaeological Sciences Bulletin 35(2), 47 (2012).Google Scholar
Bray, P., Cuénod, A., Gosden, C., et al., Form and flow: The ‘karmic cycle’ of copper. Journal of Archaeological Science 56, 202209 (2015).CrossRefGoogle Scholar
Brems, D., Ganio, M., Latruwe, K., et al., Isotopes on the beach, part 2: Neodymium isotopic analysis for the provenancing of Roman glass-making. Archaeometry 55, 449464 (2013).CrossRefGoogle Scholar
Briard, J. and Giot, P.-R., Analyses d’objets métalliques du Chalcolithique, de l’Age du Bronze Ancien et du Bronze Moyen de Bretagne. L’Anthropologie LX, 495500 (1956).Google Scholar
Briard, J. and Maréchal, J.-R., Étude technique d’objets métalliques du Chalcolithique et de l’Age du Bronze de Bretagne. Bulletin de la Société préhistorique de France 55, 422430 (1958).CrossRefGoogle Scholar
Brill, R. H., Lead and oxygen isotopes in ancient objects. In Allibone, T. E. (ed.), The Impact of the Natural Sciences on Archaeology: A Joint Symposium of the Royal Society and the British Academy, pp. 143164. The British Academy, London (1970).Google Scholar
Brill, R. H. and Wampler, J. M., Isotope ratios in archaeological objects of lead. In Young, W. J. (ed.), Application of Science in the Examination of Works of Art: Proceedings of the Seminar: September 7–16, 1965, pp. 155166. Museum of Fine Arts, Boston (1967a).Google Scholar
Brill, R. H. and Wampler, J. M., Isotope studies of ancient lead. American Journal of Archaeology 71, 6377 (1967b).CrossRefGoogle Scholar
Brongniart, A., M. Alexandre Brongniart’s new work on the history of the art of pottery and of vitrification. American Journal of Science and Arts 31(1), 134137 (1837).Google Scholar
Brongniart, A., Traité des Arts Céramiques ou des Poteries Considerérées dans Leur Histoire, Leur Practique et Leur Théorie. Béchet Jeune, Paris (1844).CrossRefGoogle Scholar
Buxeda i Garrigós, J. and Kilikoglou, V., Total variation as a measure of variability in chemical data sets. In van Zelst, L. (ed.), Patterns and Process: A Festschrift in Honor of Dr. E.V. Sayre, pp. 185198. Suitland press, Washington, DC (2003).Google Scholar
Caley, E. R., The Composition of Ancient Greek Bronze Coins. American Philosophical Society, Memoirs, Vol. 11, Philadelphia (1939).Google Scholar
Caley, E. R., Klaproth as a pioneer in the chemical investigation of antiquities. Journal of Chemical Education 26, 242247, 268 (1949).CrossRefGoogle Scholar
Caley, E. R., Analyses of Ancient Glasses 1790–1937: A Comprehensive and Critical Survey. Corning Museum of Glass, New York (1962).Google Scholar
Caley, E. R., Analysis of Ancient Metals. Pergamon Press, Oxford (1964).Google Scholar
Caley, E. R., Chang, I. S. M., and Woods, N. P., Gravimetric and spectrographic analysis of some ancient Chinese copper alloys. Ars Orientalis 11, 183193 (1979).Google Scholar
Camden, W., Britannia, sive florentissimorum regnorum Angliæ, Scotiæ, Hiberniæ and Insularum adjacentium ex intima antiquitate chorographica descriptio. Radulph, London (1586). (First English translation 1610).Google Scholar
Catling, H. W. and Jones, R. E., A reinvestigation of the provenance of the inscribed stirrup jars found at Thebes. Archaeometry 19, 137146 (1977).CrossRefGoogle Scholar
Catling, H. W. and Millett, A., A study in the composition patterns of Mycenaean pictorial pottery from Cyprus. Annual of the British School at Athens 60, 212224 (1965a).CrossRefGoogle Scholar
Catling, H. W. and Millett, A., A study of the inscribed stirrup-jars from Thebes. Archaeometry 8, 583 (1965b).CrossRefGoogle Scholar
Catling, H. W. and Millett, A., Composition and provenance: A challenge. Archaeometry 9, 9297 (1966).Google Scholar
Catling, H. W. and Millett, A., Theban stirrup-jars: Questions and answers. Archaeometry 11, 320 (1969).CrossRefGoogle Scholar
Catling, H. W., Blin-Stoyle, A. E., and Richards, E. E., Spectrographic analysis of Mycenaean and Minoan pottery. Archaeometry 4, 3138 (1961).CrossRefGoogle Scholar
Catling, H. W., Richards, E. E., and Blin-Stoyle, A. E., Correlations between composition and provenance of Mycenaean and Minoan pottery. Annual of the British School at Athens 58, 94115 (1963).CrossRefGoogle Scholar
Chernykh, E. N. (Черных, Е. Н.), История древнейшей металлургии Восточной Европы Istorii͡a drevneĭsheĭ metallurgii Vostochnoĭ Evropy (History of Ancient Metallurgy in Eastern Europe). Материалы и исселования по археологии СССР (Materialy i isselovanija po arkheologii) SSR 132, Nauka, Moskva (1966).Google Scholar
Chernykh, E. N. (Черных, Е. Н.), Древнейшая металлургия Урала и Поволжья Drevneĭshai͡a metallurgii͡a Urala i Povolzhʹi͡a [Ancient Metallurgy of the Urals and Volga Region]. Materialy i issledovanii͡a po arkheologii SSSR 172, Nauka, Moskva (1970).Google Scholar
Chernykh, E. N., Ancient Metallurgy in the USSR: The Early Metal Age. Cambridge University Press, Cambridge (1992).Google Scholar
Coghlan, H. H., Ancient Mining and Metallurgy Committee. Man 49, 43 (1949).Google Scholar
Craig, H. and Craig, V., Greek marbles: Determination of provenance by isotopic analysis. Science 176(4033), 401403 (1972).CrossRefGoogle ScholarPubMed
Dalton, J., A New System of Chemical Philosophy. Russell & Allen, Manchester (1808, 1827). (2 vols.).CrossRefGoogle Scholar
Damour, A., Sur la composition des haches en pierre trouvées dans les monuments celtiques et chez les tribus sauvages. Comptes Rendues Hebdomadaires des Séances de l’Académie des Sciences 61, 313321, 357368 (1865).Google Scholar
Degryse, P., Isotope-ratio techniques in glass studies. In Janssens, K. (ed.), Modern Methods for Analysing Archaeological and Historical Glass 1, pp. 235245. Wiley, Chichester (2013).CrossRefGoogle Scholar
Degryse, P. (ed.), Glass Making in the Greco-Roman World: Results of the ARCHGLASS Project. Studies in Archaeological Sciences 4. Leuven University Press, Leuven (2014).CrossRefGoogle Scholar
Degryse, P., Schneider, J., Haack, U., et al., Evidence for glass ‘recycling’ using Pb and Sr isotopic ratios and Sr-mixing lines: The case of early Byzantine Sagalassos. Journal of Archaeological Science 33, 494501 (2006).CrossRefGoogle Scholar
Degryse, P., Henderson, J., and Hodgins, G. (eds.), Isotopes in Vitreous Materials. Leuven University Press, Leuven (2009).CrossRefGoogle Scholar
Desch, C. H., Copper, Sumerian. Report of Committee appointed to report on the probable source of the supply of copper used by the Sumerians. Report on the Metallurgical Examination of Specimens for the Sumerian Committee of the British Association. Report of the British Association for the Advancement of Science 96th Meeting, Glasgow 1928, pp. 437441 (1929).Google Scholar
Devulder, V., Degryse, P., and Vanhaecke, F., Development of a novel method for unraveling the origin of natron flux used in Roman glass production based on B isotopic analysis via multicollector inductively coupled plasma mass spectrometry. Analytical Chemistry 85, 1207712084 (2013).CrossRefGoogle Scholar
Devulder, V., Vanhaecke, F., Shortland, A., et al., Boron isotopic composition as a provenance indicator for the flux raw material in Roman natron glass. Journal of Archaeological Science 46, 107113 (2014).CrossRefGoogle Scholar
Devulder, V., Gerdes, A., Vanhaecke, F., and Degryse, P., Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 105, 116120 (2015).CrossRefGoogle Scholar
Dixon, J. E., Cann, J. R., and Renfrew, C., Obsidian and the origins of trade. Scientific American 218(3), 3846 (1968).CrossRefGoogle Scholar
Dizé, M. J. J., Analyse du cuivre, avec lequel les Anciens fabriquoient leurs Médailles, les Instruments tranchans. Observations sur la Physique, sur l’Histoire Naturelle et sur les Arts 36, 272276 (1790).Google Scholar
Dostal, J. and Chatterjee, A. K., Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chemical Geology 163(1–4), 207218 (2000).CrossRefGoogle Scholar
Duckworth, C. N. and Wilson, A. (eds.), Recycling and Reuse in the Roman Economy. Oxford University Press, Oxford (2020).CrossRefGoogle Scholar
Dunnell, R. C., Why archaeologists don’t care about archaeometry. Archaeomaterials 7(1), 161165 (1993).Google Scholar
Smith, Elliot, Sir, G., The Ancient Egyptians and Their Influence upon the Civilization of Europe. Harper & Brother, London (1911).Google Scholar
Smith, Elliot, Sir, G., The Migrations of Early Cultures: A Study of the Significance of the Geographical Distribution of the Practice of Mummification as Evidence of the Migration of Peoples and the Spread of Certain Customs and Beliefs. Manchester University Press, Manchester (1915).Google Scholar
Smith, Elliot, Sir, G., The Influence of Ancient Egyptian Civilization in the East and in America. Manchester University Press, Manchester (1916).Google Scholar
Smith, Elliot, Sir, G., The Diffusion of Culture. Watts, London (1933).Google Scholar
Emeleus, V. M., The technique of neutron activation as applied to trace element determination in pottery and coins. Archaeometry 1, 615 (1958).Google Scholar
Emeleus, V. M., Studies of ancient ceramic objects by means of neutron bombardment and emission spectroscopy. In Young, W. J. (ed.), Application of Science in Examination of Works of Art: Proceedings of Seminar, September 15–18, pp. 153160. Museum of Fine Arts, Boston (1959).Google Scholar
Emeleus, V. M., Neutron activation analysis of Samian ware sherds. Archaeometry 3, 624 (1960).CrossRefGoogle Scholar
Emeleus, V. M. and Simpson, G., Neutron activation analysis of ancient Roman potsherds. Nature 185, 196 (1960).CrossRefGoogle Scholar
Farnsworth, M. and Ritchie, P. D., Spectrographic studies on ancient glass: Egyptian glass, mainly of the Eighteenth Dynasty, with special reference to its cobalt content. Technical Studies in the Field of the Fine Arts 6(3), 155168 (1937–1938).Google Scholar
Faure, G., Principles of Isotope Geology. Wiley, New York (1986). (2nd ed.).Google Scholar
Fleming, S. J., Roman Glass; Reflections on Cultural Change. University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia (1999).Google Scholar
Foster, H. E., and Jackson, C. M., The composition of Late Romano-British colourless vessel glass: Glass production and consumption. Journal of Archaeological Science 37, 30683080 (2010).CrossRefGoogle Scholar
Foy, D., Vichy, M., and Picon, M., Les matières premières du verre et la question des produits semi-finis: Antiquité et Moyen Age. In Pétrequin, P., Fluzin, P., Thiriot, J. and Benoit, P., (eds.), Arts du feu et productions artisanales, XXe Rencontres internationales d’Archéologie et d’Histoire d’Antibes, 21–23 octobre 1999, pp. 419433. APDCA, Antibes (2000).Google Scholar
Franklin, U. M., The beginnings of metallurgy in China: A comparative approach. In Kuwayama, G. (ed.), The Great Bronze Age of China: A Symposium, pp. 9499. Los Angeles County Museum of Art, Los Angeles (1983).Google Scholar
Freestone, I. and Gaimster, D. R. M. (eds.), Pottery in the Making: World Ceramic Traditions. British Museum, London (1997).Google Scholar
Freestone, I. C., Leslie, K. A., Thirlwall, M., and Gorin-Rosen, Y., Strontium isotopes in the investigation of early glass production: Byzantine and early Islamic glass from the Near East. Archaeometry 45, 1932 (2003).CrossRefGoogle Scholar
Frison, G. C., Wright, G. A., Griffin, J. B., and Gordus, A. A., Neutron activation analysis of obsidian: An example of its relevance to northwestern plains archaeology. Plains Anthropologist 13(41), 209217 (1968).CrossRefGoogle Scholar
Gale, N. H., Mediterranean obsidian source characterization by strontium isotope analysis. Archaeometry 23, 4151 (1981).CrossRefGoogle Scholar
Gale, N. H., Copper oxhide ingots: Their origin and their place in the Bronze Age Metals Trade in the Mediterranean. In Gale, N. H. (ed.), Science and Archaeology: Bronze Age Trade in the Mediterranean, pp. 197239. Studies in Mediterranean Archaeology XC. P. Åstroms Förlag, Goteborg (1991).Google Scholar
Gale, N. H. and Stos-Gale, Z., Lead and silver in the ancient Aegean. Scientific American 244, 176193 (1981a).CrossRefGoogle Scholar
Gale, N. H. and Stos-Gale, Z. A., Cycladic lead and silver metallurgy. Annual of the British School at Athens 76, 169224 (1981b).CrossRefGoogle Scholar
Gale, N. H. and Stos-Gale, Z. A., Bronze Age copper sources in the Mediterranean: A new approach. Science 216, 1119 (1982).CrossRefGoogle ScholarPubMed
Gale, N. H. and Stos-Gale, Z. A., Lead isotope studies in the Aegean – the British Academy Project. In Pollard, A. M. (ed.), Advances in Archaeological Science, pp. 63108. Proceedings of the British Academy 77, British Academy, London (1992).Google Scholar
Giot, P.-R., Bourhis, J., and Briard, J., Analyses spectrographiques d’objets préhistoriques et antiques. Premiere serie. Travaux du Laboratoire d’anthropologie prehistorique, 1964–1965. Laboratoire d’anthropologie préhistorique, Faculté des sciences, Rennes (1966, 1970, 1975, 1979).Google Scholar
Glascock, M. D. and Macdonald, B. L., Multivariate analysis in archaeology. In Pollard, A. M., Armitage, R. A., and Makarewicz, C. (eds.), Handbook of Archaeological Sciences, pp. 11831192. Wiley, Chichester (2023).CrossRefGoogle Scholar
Glascock, M. D. and Neff, H., Neutron activation analysis and provenance research in archaeology. Measurement Science and Technology 14, 15161526 (2003).CrossRefGoogle Scholar
Göbel, F., Ueber den Einfluss der Chemie auf die Ermittelung der Völker der Vorzeit oder Resultate der chemischen Untersuchung metallischer Alterthümer insbesondere der in den Ostseegouvernements vorkommenden, Behufs der Ermittelung der Völker, van welchen sie abstammen. Ferdinand Enke, Erlangen (1842).Google Scholar
Gordus, A. A., Wright, G. A., and Griffin, J. B., Obsidian sources characterized by neutron-activation analysis. Science 161(3839), 382384 (1968).CrossRefGoogle ScholarPubMed
Granger, F., Vitruvius Pollio on Architecture. Heinemann, London (1931–1934).Google Scholar
Green, G. A., Gold Coinage in the Roman World: Function and Production. PhD thesis, University of Warwick (2020).Google Scholar
Greenaway, F., The early development of analytical chemistry. Endeavour 21, 9197 (1962).Google Scholar
Greenaway, F., The historical continuity of the tradition of assaying. In Proceedings of the Tenth International Congress of the History of Science: Ithaca 26 VIII – 2 IX 1962, Part 2, pp. 819823. Hermann, Paris (1964).Google Scholar
Grögler, N., Geiss, J., Grünefelder, M., and Houtermans, F. G., Isotopenuntersuchungen zur Bestimmung der Herkunft romischer Bleirohre und Bleibarren. Zeitschrift für Naturforschung 21, 11671172 (1966).CrossRefGoogle Scholar
Hahn-Weinheimer, P., Ueber spektrochemische Untersuchungen an römischen Fenstergläsern. Glastechnische Berichte 27, 459464 (1954).Google Scholar
Harbottle, G., Chemical characterization in archaeology. In Ericson, J. E. and Earle, T. K. (eds.), Contexts for Prehistoric Exchange, pp. 1351. Academic Press, New York (1982).CrossRefGoogle Scholar
Harbottle, G. and Holmes, L., The history of the Brookhaven National Laboratory project in archaeological chemistry, and applying nuclear methods to the fine arts. Archaeometry 49, 185199 (2007).CrossRefGoogle Scholar
Harding, A. and Warren, S. E., Early Bronze Age faience beads from Central Europe. Antiquity 47, 6466 (1973).Google Scholar
Hawthorne, J. G. and Smith, C. S., On Divers Arts – the treatise of Theophilus. Chicago University Press, Chicago (1963).Google Scholar
Henderson, P., Rare Earth Element Geochemistry. Elsevier, Oxford (1984).Google Scholar
Hodson, F. R., Searching for structure within multivariate archaeological data. World Archaeology 1, 90105 (1969).CrossRefGoogle Scholar
Hofmann, K. B., Über die schmelzfarben von Tell el Jehüdije. Zeitschrift für ägyptische Sprache und Alterthumskunde XXIII, 6268 (1885).Google Scholar
Holmyard, E. J., The Works of Geber Englished by Richard Russell, 1678. Dent, London (1928).Google Scholar
Hopkins, O., The Museum: From Its Origins to the 21st Century. Frances Lincoln, London (2021).Google Scholar
Hughes, M. J. and Oddy, W. A., A reappraisal of the specific gravity method for the analysis of gold alloys. Archaeometry 12, 111 (1970).CrossRefGoogle Scholar
Hunt, A., On the origin of ceramics: Moving toward a common understanding on provenance. Archaeological Review from Cambridge 27(1), 8597 (2012).Google Scholar
Hunt, A. (ed.), The Oxford Handbook of Archaeological Ceramic Analysis. Oxford University Press, Oxford (2017).Google Scholar
Jackson, C. M., Cool, H. E. M., and Wager, E. C. W., The manufacture of glass in Roman York. Journal of Glass Studies 40, 5561 (1998).Google Scholar
Jones, R., Greek and Cypriot Pottery: A Review of Scientific Studies. British School at Athens, Athens (1986).Google Scholar
Junghans, S., Sangmeister, E., and Schröder, M., Metallanalysen kupferzeitlichen mid frühbronzezeitlichen Bodenfunde aus Europa. Studien zu den Anfangen der Metallurgie 1. Gebr. Mann, Berlin (1960).Google Scholar
Junghans, S., Sangmeister, E., and Schröder, M., Kupfer und Bronze in der frühen Metallzeit Europas, Studien zu den Anfängen der Metallurgie. Studien zu den Anfangen der Metallurgie 2, vols. 1–3, Gebr. Mann, Berlin (1968).Google Scholar
Junghans, S., Sangmeister, E., and Schröder, M., Kupfer und Bronze in der frühen Metallzeit Europas: Katalog der Analysen Nr. 10041–22000 (mit Nachuntersuchungen der Analysen Nr. 1–10400). Studien zu den Anfängen der Metallurgie 2.4. Gebr. Mann, Berlin (1974).Google Scholar
Kirchoff, G. and Bunsen, R., Chemische analyse durch spectralbeobachtungen. Annalen der Physik und Chemie CX, 161189 (1860).CrossRefGoogle Scholar
Klaproth, M. H., Mémoire de numismatique docimastique. Mémoires de l’Academie Royale des Sciences et Belles-Lettres depuis l’avénement de Fréderic Guillaume II au Trône. (Classe de Philosophie Expérimentale) 45, 97113 (1792/3).Google Scholar
Klaproth, M. H., Sur quelques vitrifications antiques. Mémoires de l’Académie Royale des Sciences et Belles-Lettres: Classe de Philosophie Expérimentale 49, 316 (1798).Google Scholar
Knapp, A. B. and Cherry, J. F., Provenience Studies and Bronze Age Cyprus: Production, Exchange and Politico-Economic Change. Prehistory Press, Maddison (1994).Google Scholar
Kohl, P. L., The Making of Bronze Age Eurasia. Cambridge University Press, Cambridge (2007).CrossRefGoogle Scholar
Krause, R., Studien zur kupfer- und frühbronzezeitlichen Metallurgie zwischen Karpatenbecken und ostsee. Vorgeschichtliche Forschungen 24, Marie Leidorf, Rahden (2003).Google Scholar
Krause, R. and Pernicka, E., SMAP – The Stuttgart Metal Analysis Project. Archaologisches Nachrichtenblatt 3, 274291 (1996).Google Scholar
Legg, R. and Fowles, J. (eds.), Monumenta Britannica, or, A Miscellany of British Antiquities (Aubrey, J.). Dorset, Sherborne (1980). (2 vols.).Google Scholar
Levey, M., Chemistry and Chemical Technology in Ancient Mesopotamia. Elsevier, Amsterdam (1959).Google Scholar
Liritzis, I. and Laskaris, N., Advances in obsidian hydration dating by secondary ion mass spectrometry: World examples. Nuclear Instruments and Methods in Physics Research Section B 267(1), 144150 (2009).CrossRefGoogle Scholar
Liu, R., Bray, P., Pollard, A. M., and Hommel, P., Chemical analysis of ancient Chinese Bronzes: past, present and future. Archaeological Research in Asia 3, 18 (2015).CrossRefGoogle Scholar
Liu, R., Pollard, A.M., Cao, Q., et al., Social hierarchy and the choice of metal recycling at Anyang, the last capital of Bronze Age Shang China. Scientific Reports 10, 18794 (2020).CrossRefGoogle ScholarPubMed
Lobo, L., Devulder, V., Degryse, P., and Vanhaecke, F., Investigation of natural isotopic variation of Sb in stibnite ores via multi-collector ICP-mass spectrometry – perspectives for Sb isotopic analysis of Roman glass. Journal of Analytical Atomic Spectrometry 27, 13041310 (2012).CrossRefGoogle Scholar
Lobo, L., Degryse, P., Shortland, A., and Vanhaecke, F., Isotopic analysis of antimony using multi-collector ICP-mass spectrometry for provenance determination of Roman glass. Journal of Analytical Atomic Spectrometry 28, 12131219 (2013).CrossRefGoogle Scholar
Lobo, L., Degryse, P., Shortland, A., Eremin, K., and Vanhaecke, F., Copper and antimony isotopic analysis via multi-collector ICP-mass spectrometry for provenancing ancient glass. Journal of Analytical Atomic Spectrometry 29, 5864 (2014).CrossRefGoogle Scholar
Lucas, A., Ancient Egyptian Materials and Industries. Arnold, London (1926).Google Scholar
Mauss, M., Essai sur le don: Forme et raison de l’échange dans les sociétés archaïques. L’Année Sociologique 1, 30180 (1923–1924).Google Scholar
Mcarthur, J. T., Inconsistencies in the composition and provenance studies of the inscribed jars found at Thebes. Archaeometry 20, 177182 (1978).CrossRefGoogle Scholar
Michelaki, K. and Hancock, R. G. V., Chemistry versus data dispersion: Is there a better way to assess and interpret archaeometric data? Archaeometry 53(6), 12591279 (2011).CrossRefGoogle Scholar
Michelaki, K., Braun, G. V., and Hancock, R. G. V., Local clay sources as histories of human – landscape interactions: A ceramic taskscape perspective. Journal of Archaeological Method and Theory 22, 783827 (2015).CrossRefGoogle Scholar
Millet, A. and Catling, H. W., Composition patterns of Minoan and Mycenean pottery: Survey and prospects. Archaeometry 10, 7077 (1967).CrossRefGoogle Scholar
Muhly, J. D., Early Bronze Age tin and the Taurus. American Journal of Archaeology 97, 239254 (1993).CrossRefGoogle Scholar
Neumann, B., Antike Gläser, ihre Zusammensetzung und Färbung. Zeitschrift für angewandte Chemie 38, 776780, 857864 (1925); II. 40, 963–967 (1927); III. Assyrich–babylonische Gläser, 41, 203–204 (1928); IV. 42, 835–838 (1929).CrossRefGoogle Scholar
Nier, A. O., Variations in the relative abundances of the isotopes of common lead from various sources. Journal of the American Chemical Society 60, 15711576 (1938).CrossRefGoogle Scholar
Okunev, A. I. (Окунев, А.И.), Поведение некоторых редких и рассеянных элементов в процессах металлургической переработки медных руд и концентратов (The Behaviour of Some Rare and Trace Elements in the Process of Metallurgical Processing of Copper Ores and Concentrates). Nauka, Moscow (1960).Google Scholar
Oldeberg, A., Metallteknik under Förhistorik Tid. Harrassowitz, Lund (1942–1943). (2 vols.).Google Scholar
Oldroyd, D. R., Some eighteenth century methods for the chemical analysis of minerals. Journal of Chemical Education 50, 337340 (1973).CrossRefGoogle Scholar
Olin, J. S. and Franklin, A. D. (eds.), Archaeological Ceramics. Smithsonian Institution Press, Washington, DC (1982).Google Scholar
Orton, C. and Hughes, M., Pottery in Archaeology. Cambridge University Press, Cambridge (2013).CrossRefGoogle Scholar
Otto, H. and Witter, W., Handbuch der ältesten vorgeschichtlichen Metallurgie in Mitteleuropa. Johann Ambrosius Barth, Leipzig (1952).Google Scholar
Parker Pearson, M., Pollard, J., Richards, C., et al., Megalith quarries for Stonehenge’s bluestones. Antiquity 93, 4562 (2019).CrossRefGoogle Scholar
Pernicka, E., A short history of provenance analysis of archaeological metal objects. In Aspes, A. (ed.), I Bronzi del Garda: Valorizzazione delle Collezioni di Bronzi Preistorici di Uno dei Più Importanti Centri Metallurgici dell’Europa del II Millennio A.C., pp. 2737. Memorie del Museo Civico di Storia Naturale di Verona/Sezione Scienze dell’Uomo. Museo Civico di Storia Naturale, Verona (2011).Google Scholar
Pernicka, E., Provenance determination of archaeological metal objects. In Roberts, B. W. and Thornton, C. P. (eds.), Archaeometallurgy in Global Perspective, pp. 239268. Springer, London (2014).CrossRefGoogle Scholar
Pettus, Sir J., Fleta Minor, or, The Laws of Art and Nature in Knowing, Judging, Assaying, Fining, Refining, and Inlarging the Bodies of Confin’d Metals: In Two Parts. The First Contains Assays of Lazarus Erckern … in v. Books; Originally Written by Him in the Teutonick Language, and Now Translated into English. The Second Contains Essays on Metallick Words, as a Dictionary to Many Pleasing Discoveries. Dawks, London (1683).CrossRefGoogle Scholar
Pittioni, R., Urzeitlicher Bergbau auf Kupfererz und Spurenanalyse: Beiträge zum Problem der Relation Lagerstätte-Fertigobjekt. Archiv für ur- und frühgeschichtliche Bergbauforschung, 10. F. Deuticke, Wien (1957).Google Scholar
Pollard, A. M., A critical study of multivariate methods as applied to provenance data. In Aspinall, A. and Warren, S. E. (eds.), Proceedings of the 22nd Symposium on Archaeometry, University of Bradford, March 30th – April 3rd, 1982, pp. 5666. University of Bradford, Bradford (1983).Google Scholar
Pollard, A. M., Letters from China – a history of the origins of the chemical analysis of ceramics. Ambix 62, 5071 (2015).CrossRefGoogle Scholar
Pollard, A. M., The first hundred years of archaeometallurgical chemistry: Pownall (1775) to von Bibra (1869). Journal of the Historical Metallurgy Society 49(1), 3749 (2016).Google Scholar
Pollard, A. M., Johann Christian Wiegleb and the first published chemical analyses of archaeological bronzes. Journal of the Historical Metallurgy Society 21(1), 4854 (2018).Google Scholar
Pollard, A. M. and Bray, P. J., A new method for combining lead isotope and lead abundance data to characterise archaeological copper alloys. Archaeometry 57, 9961008 (2015).CrossRefGoogle Scholar
Pollard, A. M. and Gosden, C., An Archaeological Perspective on the History of Technology. CUP Elements. Cambridge University Press, Cambridge (2023).CrossRefGoogle Scholar
Pollard, A. M. and Wood, N. D., Development of Chinese porcelain technology at Jingdezhen. In Olin, J. S. and Blackman, M. J. (eds.), Proceedings of the 24th International Archaeometry Symposium, pp. 105114. Smithsonian Institution, Washington DC (1986).Google Scholar
Pollard, M., Batt, C., Stern, B., and Young, S. M. M., Analytical Chemistry in Archaeology. Cambridge University Press, Cambridge (2007).CrossRefGoogle Scholar
Pollard, A. M., Bray, P., Gosden, C., Wilson, A., and Hamerow, H., Characterising copper-based metals in Britain in the first millennium AD: A preliminary quantification of metal flow and recycling. Antiquity 89, 697713 (2015).CrossRefGoogle Scholar
Pollard, A. M., Heron, C., and Armitage, R. A., Archaeological Chemistry. Royal Society of Chemistry, Cambridge (2017).Google Scholar
Pollard, A. M., Bray, P., Cuénod, A., et al., Beyond Provenance: The Interpretation of Chemical and Isotopic Data in Archaeological Bronzes. Studies in Archaeological Science, University of Leuven Press, Leuven (2018).CrossRefGoogle Scholar
Pollard, A. M., Armitage, R. A., and Makarewicz, C. (eds.), Handbook of Archaeological Sciences. Wiley, Chichester (2023a).CrossRefGoogle Scholar
Pollard, A. M., Ma, Q., Bidegaray, A.-I., and Liu, R., The use of kernel density estimates on chemical and isotopic data in archaeology. In Pollard, A. M., Armitage, R. A., and Makarewicz, C. (eds.), Handbook of Archaeological Sciences, pp. 12271240. Wiley, Chichester (2023b).CrossRefGoogle Scholar
Polyani, K., The Great Transformation: The Political and Economic Origins of Our Time. Beacon Press, Boston (1944).Google Scholar
Preuschen, E. and Pittioni, R., Untersuchungen im Bergbaugebiete Kelchalpe bei Kitzbühel, Tirol: 1. Bericht über die Arbeiten 1931–1936 zur Uregeschichte des Kupferbergwesens in Tirol. Mitteilungen der Prähistorischen Kommission der Österreichischen Akademie der Wissenschaften 3, Wien (1937).Google Scholar
Price, T. D. and Burton, J. H., Provenience and provenance. In Price, T. D. and Burton, J. H. (eds.), An Introduction to Archaeological Chemistry, pp. 213242. Springer, New York (2011).CrossRefGoogle Scholar
Raison, J., Les Vases à Inscriptions Peintes de l’Age Mycénien et leur Contexte Archéologique. Incunabula Graeca, XIX. Centro di Studi Micenei, Universita di Roma, Rome (1968).Google Scholar
Rawson, J., Western Zhou Ritual Bronzes from the Arthur M. Sackler Collections. Arthur M. Sackler Foundation, Washington, DC (1990).Google Scholar
Renfrew, C. and Bahn, P., Archaeology: Theories, Methods and Practice. Thames and Hudson, London (2020). (8th ed.).Google Scholar
Renfrew, C., Cann, J. R. and Dixon, J. E., Obsidian in the Aegean. Annual of the British School at Athens 60, 225247 (1965).CrossRefGoogle Scholar
Rice, P. M., Pottery Analysis: A Sourcebook. University of Chicago Press, Chicago (1987).Google Scholar
Richards, E. E., Spectrographic investigation of some Romano-British mortaria. Archaeometry 2, 2331 (1959).Google Scholar
Richards, T. W., The composition of Athenian pottery. American Chemical Journal 57, 152154 (1895).Google Scholar
Riehle, K., Kistler, E., Öhlinger, B., et al., Neutron activation analysis in Mediterranean archaeology: Current applications and future perspectives. Archaeological and Anthropological Sciences 15(3), 25 (2023).CrossRefGoogle ScholarPubMed
Ritchie, P. D., Spectrographic studies on ancient glass: Chinese glass, from Pre-Han to T’ang times. Technical Studies in the Field of the Fine Arts 5(4), 209220 (1936–1937).Google Scholar
Roberts, B. W., Thornton, C. P., and Pigott, V. C., Development of metallurgy in Eurasia. Antiquity 83, 10121022 (2009).CrossRefGoogle Scholar
Sabloff, J., Analyses of fine paste ceramics. In Willey, G. R. (ed.), Excavations at Seibal, Department of Petan, Guatemala, pp. 265343. Memoirs of the Peabody Museum of Archaeology and Ethnology, Vol. 15, Nos. 1 and 2. Harvard University Press, Cambridge, MA (1982).Google Scholar
Sainsbury, V. A., When things stopped travelling: Recycling and the glass industry in Britain from the first to fifth century CE. In Rosenow, D., Phelps, M., Meek, A., and Freestone, I. (eds.), Things that Travelled: Mediterranean Glass in the First Millennium CE, pp. 324345. UCL Press, London (2018).CrossRefGoogle Scholar
Sayre, E. V. and Dodson, R. W., Neutron activation study of Mediterranean potsherds. American Journal of Archaeology 61, 3541 (1957).CrossRefGoogle Scholar
Sayre, E. V. and Smith, R. W., Compositional categories of ancient glass. Science 133(3467), 18241826 (1961).CrossRefGoogle ScholarPubMed
Schubert, F. and Schubert, E., Spektralanalytische Untersuchungenvon Hort- und Einzelfunden der Periode BIII. In Mozsolics, A. (ed.), Bronzefunde des Karpatenbeckens: Depotfundhorizonte von Hajdúsámson und Kosziderpadlás, pp. 185223. Akadémiai Kiadó, Budapest (1967).Google Scholar
Seligman, C. G. and Beck, H. C., Far eastern glass: Some western origins. Bulletin of the Museum of Far Eastern Antiquities 10, 164 (1938).Google Scholar
Seligman, C. G., Ritchie, P. D., and Beck, H. C., Early Chinese glass from pre-Han to Tang times. Nature 138, 721 (1936).CrossRefGoogle Scholar
Sena, Y. C., Bronze and Stone: The Cult of Antiquity in Song Dynasty China. University of Washington Press, Seattle (2019).CrossRefGoogle Scholar
Shaw, S., The Chemistry of the Several Natural and Artificial Heterogeneous Compounds Used in Manufacturing Porcelain, Glass, and Pottery. Lewis and Son, London (1837).Google Scholar
Shepard, A. O., Technology of Pecos pottery. In Kidder, A. V. and Shepard, A. O. (eds.), The Pottery of Pecos: Papers of the Phillips Academy Southwestern Expedition 2, pp. 389587. Yale University Press, New Haven (1936).Google Scholar
Shepard, A. O., Ceramics for the Archaeologist. Carnegie Institution of Washington 609, Washington DC (1956).Google Scholar
Shortland, A., Lapis Lazuli from the Kiln: Glass and Glass Making in the Late Bronze Age. Leuven University Press, Leuven (2012).Google Scholar
Shortland, A., Rogers, N., and Eremin, K., Trace element discriminants between Egyptian and Mesopotamian Late Bronze Age glasses. Journal of Archaeological Science 34, 781789 (2007).CrossRefGoogle Scholar
Sieveking, G. de G. and Hart, M. B., The Scientific Study of Flint and Chert. Cambridge University Press, Cambridge (1986).Google Scholar
Sieveking, G. de G., Craddock, P. T., Hughes, M. J., Bush, P., and Ferguson, J., Characterization of prehistoric flint mine products. Nature 228, 251254 (1970).CrossRefGoogle ScholarPubMed
Silvestri, A., Molin, G., and Salviulo, G., The colourless glass of Iulia Felix. Journal of Archaeological Science 35, 331341 (2008).CrossRefGoogle Scholar
Sisco, A. G. and Smith, C. S., Bergwerk-und Probierbüchlein: A Translation from the German of the Bergbüchlein a Sixteenth-Century Book on Mining Geology. American Institute of Mining and Metallurgical Engineers, New York (1949).Google Scholar
Sisco, A. G. and Smith, C. S., Lazarus Ercker’s Treatise on Ores and Assaying. University of Chicago, Chicago (1951).Google Scholar
So, J., Eastern Zhou Ritual Bronzes in the Arthur M. Sackler Collections. Arthur M. Sackler Foundation, Washington, DC (1995).Google Scholar
Stone, J. F. S. and Thomas, L. C., The use and distribution of faience in the ancient east and prehistoric Europe, with notes on the spectrochemical analysis of faience. Proceedings of the Prehistoric Society 22, 3784 (1956).CrossRefGoogle Scholar
Stos-Gale, Z. A. and Gale, N. H., The sources of Mycenaean silver and lead. Journal of Field Archaeology 9, 467485 (1982).CrossRefGoogle Scholar
Stukeley, W., Stonehenge a Temple Restor’d to the British Druids. Innys and Manby, London (1740).Google Scholar
Thompson, F. C., The early metallurgy of copper and bronze: A report to the Ancient Mining and Metallurgy Committee of the Royal Anthropological Institute. Man 58, 17 (1958).CrossRefGoogle Scholar
Trigger, B., A History of Archaeological Thought. Cambridge University Press, Cambridge (1989).Google Scholar
Tykot, R. H., Non-destructive pXRF on prehistoric obsidian artifacts from the Central Mediterranean. Applied Sciences 11, 7459 (2021).CrossRefGoogle Scholar
Vauquelin, L. N., Reflections on the qualities of pottery, with the results of some analyses of earths and of common pottery. Journal of Natural Philosophy, Chemistry & the Arts 3, 262264 (1800).Google Scholar
Vauquelin, L. N., Réflections sur l’analyse des pierres en general, et résultats de plusiers de ces analyses faites au laboratoire de l’école des mines depuis quelques mois. Annales de Chimie 30, 66106 (1799).Google Scholar
Velde, B., Glass compositions over several millennia in the Western World. In Janssens, K. (ed.), Modern Methods for Analysing Archaeological and Historical Glass, Volume I, pp. 6778. Wiley, Chichester (2013).CrossRefGoogle Scholar
Vogel, H. U., Copper smelting and fuel consumption in Yunnan, eighteenth to nineteenth centuries. In Hirzel, T. and Kim, N. (eds.), Metals, Moneys and Markets in Early Modern Societies: East Asian and Global Perspectives, pp. 119170. Bunka Wenhua Tubingen East Asian Studies 17. LIT Verlag, Berlin (2008).Google Scholar
von Bibra, E. F., Die Bronzen und Kupferlegirung der alten und ältesten Völker, mit Rücksichtnahme auf jene der Neuzeit. Ferdinand Enke, Erlangen (1869).Google Scholar
von Engeström, G., Försök på naturlig flos zinci ifrån China (On natural flos zinci from China). Kungliga Vetenskaps Academiens Handlingar 36, 7885 (1775).Google Scholar
von Engeström, G., Pak-Fong, ein Chinesisches weiss metal. Der Königlichen Schwedischen Akademie der Wissenschaften neue Abhandlungen, aus der Naturlehre, Haushaltungskunst und Mechanik 38, 4042 (1776).Google Scholar
Walton, M. S., Shortland, A., Kirk, S., and Degryse, P., Evidence for the trade of Mesopotamian and Egyptian glass to Mycenaean Greece. Journal of Archaeological Science 36, 14961503 (2009).CrossRefGoogle Scholar
Wang, Z. 王宗沐, 江西省大志 Jiang-xi sheng da zhi (The Great Gazette of Jiang-xi Province). Chengwen chubanshe 成文出版社 Cheng Wen Press, Taibei 台北 (1597).Google Scholar
Waterbolk, H. T. and Butler, J. J., Comments on the use of metallurgical analysis in prehistoric studies. Helinium V, 227251 (1965).Google Scholar
Watson, J. H., Ancient Trial Plates: A Description of the Ancient Gold and Silver Trial Plates Deposited in the Pyx Stronghold of the Royal Mint. H.M.S.O, London (1962).Google Scholar
Weigand, P. C., Harbottle, G., and Sayre, E. V., Turquoise sources and source analysis: Mesoamerican and the Southwestern USA. In Earle, T. K. and Ericson, J. E. (eds.), Exchange Systems in Prehistory, pp. 1534. Academic Press, New York (1977).CrossRefGoogle Scholar
Wiegleb, J. C., Chemisch Untersuchung einiger künstlichen Metallarten, woraus verschiedene aus dem Altertum herrührende Instrumente versertiget gewesen, welche im vorigen Jahre in einer benachbarten Gegend gefunden worden find. Acta Academiae Electoralis Moguntinae Scientiarum Utilium, quae Erfurti est, 5057 (1777).Google Scholar
Wilson, A. L., The provenance of the inscribed stirrup‐jars found at Thebes. Archaeometry 18, 5158 (1976).CrossRefGoogle Scholar
Wilson, L. and Pollard, A. M., The provenance hypothesis. In Brothwell, D. R. and Pollard, A. M. (eds.), Handbook of Archaeological Sciences, pp. 507517. John Wiley and Sons, Chichester (2001).Google Scholar
Wright, G. A., Obsidian Analyses and Early Trade in the Near East: 7500 to 3500 B.C. Ph.D. Thesis, Anthropology, History, Archaeology, University of Michigan (1968).Google Scholar
Zhang, W. and Hu, Z., A critical review of isotopic fractionation and interference correction methods for isotope ratio measurements by laser ablation multi-collector inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 171, 105929 (2020).CrossRefGoogle Scholar

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Retrospective and Prospective for Scientific Provenance Studies in Archaeology
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Retrospective and Prospective for Scientific Provenance Studies in Archaeology
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Retrospective and Prospective for Scientific Provenance Studies in Archaeology
Available formats
×