Published online by Cambridge University Press: 05 April 2013
You boil it in sawdust: you salt it in glue
You condense it with locusts and tape
Still keeping one principal object in view –
To preserve its symmetrical shape.
Lewis Carrroll, The Hunting of the SnarkThe preceding chapter dealt with the kinematics of the curved spacetime geometry, that is, the description of the geometry and its curvature. We now come to the dynamics of the geometry, that is, the interaction of the geometry and matter. This interaction is the essence of Einstein’s equations for the gravitational field.
There are several routes that lead to Einstein’s equations; they differ in their starting points. One route begins with the equations of the linear approximation of Chapter 3 and adds the assumption that the exact, nonlinear equations are of second differential order and are endowed with general invariance. These assumptions suffice to completely determine the exact, nonlinear equations for the gravitational field.
That the linear equations imply the full nonlinear equations is a quite remarkable feature of Einstein’s theory of gravitation. Given some complicated set of nonlinear equations, it is always easy to derive the corresponding linear approximation; but in general, if we know only the linear approximation, we cannot reconstruct the nonlinear equations. What permits us to perform this feat in gravitational theory is the requirement of general invariance. As we will see later, this requirement states that the form and the content of the equations must remain unchanged under all coordinate transformations.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.