Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 Fourier series: convergence and summability
- 2 Harmonic functions; Poisson kernel
- 3 Conjugate harmonic functions; Hilbert transform
- 4 The Fourier transform on ℝd and on LCA groups
- 5 Introduction to probability theory
- 6 Fourier series and randomness
- 7 Calderón–Zygmund theory of singular integrals
- 8 Littlewood–Paley theory
- 9 Almost orthogonality
- 10 The uncertainty principle
- 11 Fourier restriction and applications
- 12 Introduction to the Weyl calculus
- References
- Index
10 - The uncertainty principle
Published online by Cambridge University Press: 05 February 2013
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 Fourier series: convergence and summability
- 2 Harmonic functions; Poisson kernel
- 3 Conjugate harmonic functions; Hilbert transform
- 4 The Fourier transform on ℝd and on LCA groups
- 5 Introduction to probability theory
- 6 Fourier series and randomness
- 7 Calderón–Zygmund theory of singular integrals
- 8 Littlewood–Paley theory
- 9 Almost orthogonality
- 10 The uncertainty principle
- 11 Fourier restriction and applications
- 12 Introduction to the Weyl calculus
- References
- Index
- Type
- Chapter
- Information
- Classical and Multilinear Harmonic Analysis , pp. 268 - 286Publisher: Cambridge University PressPrint publication year: 2013